14010 21 5070	0.00 000		, ,
O(3)—C(3)	1.234 (6)	C(9)—C(11)	1.541 (6)
O(17)—C(22)	1.355 (7)	C(9)—C(10)	1.545 (6)
O(17)—C(17)	1.458 (5)	C(11)—C(12)	1.540 (6)
C(1)—C(10)	1.519 (8)	C(12)—C(13)	1.526 (7)
C(1)—C(2)	1.524 (7)	C(13)—C(14)	1.530(6)
C(2)—C(3)	1.482 (7)	C(13)—C(18)	1.536 (6)
C(3)—C(4)	1.450 (8)	C(13)—C(17)	1.561 (6)
C(4)—C(5)	1.348 (7)	C(14)—C(15)	1.515 (8)
C(5)—C(6)	1.493 (8)	C(15)—C(16)	1.567 (7)
C(5)—C(10)	1.513 (6)	C(16)—C(17)	1.549 (7)
C(6)—C(7)	1.528 (7)	C(17)—C(20)	1.457 (8)
C(7)—C(8)	1.532 (6)	C(20)—C(21)	1.176 (7)
C(8)—C(14)	1.526 (6)	O(22)—C(22)	1.202 (7)
C(8)—C(9)	1.550 (7)	C(22)—C(23)	1.503 (8)
C(22)—O(17)—C(17)	119.4 (4)	C(13)—C(12)—C(11)	110.6 (4)
C(10) - C(1) - C(2)	112.1 (5)	C(12)—C(13)—C(14)	109.5 (4)
C(3) - C(2) - C(1)	111.7 (5)	C(12)—C(13)—C(18)	110.7 (4)
O(3) - C(3) - C(4)	120.4 (6)	C(14)—C(13)—C(18)	112.7 (4)
O(3) - C(3) - C(2)	121.2 (6)	C(12) - C(13) - C(17)	115.8 (4)
C(4) - C(3) - C(2)	118.3 (5)	C(14) - C(13) - C(17)	99.8 (3)
C(5) - C(4) - C(3)	122.0 (5)	C(18)—C(13)—C(17)	107.9 (4)
C(4) - C(5) - C(6)	120.1 (5)	C(15)—C(14)—C(8)	119.4 (4)
C(4) - C(5) - C(10)	122.1 (5)	C(15) - C(14) - C(13)	104.8 (4)
C(6) - C(5) - C(10)	117.6 (4)	C(8) - C(14) - C(13)	112.4 (3)
C(5)—C(6)—C(7)	113.6 (4)	C(14)—C(15)—C(16)	104.4 (4)
C(6) - C(7) - C(8)	111.2 (4)	C(17)—C(16)—C(15)	105.6 (4)
C(14)—C(8)—C(7)	111.8 (4)	C(20)—C(17)—O(17)	108.7 (4)
C(14) - C(8) - C(9)	109.5 (4)	C(20) - C(17) - C(16)	111.5 (4)
C(7)—C(8)—C(9)	109.0 (4)	O(17) - C(17) - C(16)	113.4 (4)
C(11) - C(9) - C(10)	111.4 (4)	C(20) - C(17) - C(13)	112.4 (4)
C(11) - C(9) - C(8)	112.4 (4)	O(17) - C(17) - C(13)	107.1 (3)
C(10) - C(9) - C(8)	111.5 (4)	C(16) - C(17) - C(13)	103.6 (4)
C(5) - C(10) - C(1)	111.7 (4)	C(21) - C(20) - C(17)	179.4 (5)
C(5) - C(10) - C(9)	111.6 (4)	O(22)O(17)	123.2 (5)
C(1) - C(10) - C(9)	111.9 (4)	O(22)—C(22)—C(23)	127.6 (6)
C(12) - C(11) - C(9)	112.5 (4)	O(17) - C(22) - C(23)	109.2 (6)
C(13)—C(17	7)—O(17)—C(2	22) 172.9 (5)	
C(16)—C(17	C(2) = O(17) = C(2)	22) 59.2 (6)	
C(17)—O(1	() - C(22) - O(2)	(22) -0.6(9)	
$C(1) \rightarrow O(1)$	n = (22) = (2)	(1) 1/99(5)	

Table 2. Selected geometric parameters (Å, °)

Table 3. C— $H \cdots O$ hydrogen-bond parameters (Å, °)

As H-atom positions are theoretical (C—H 1.09 Å), no e.s.d.'s are given for parameters involving H atoms.

C—H· · · O	H···O	C···O	$C - H \cdots C$) H···O==C
C21—H···O3 ⁱ	2.18	3.097 (7)	140	145
C4—H· · ·O22 ⁱⁱ	2.49	3.578 (7)	172	161

Symmetry codes: (i) $\frac{3}{2} - x$, 1 - y, $z + \frac{3}{2}$; (ii) $\frac{1}{2} - x$, 1 - y, $z - \frac{3}{2}$.

Table 4. Selected IR stretching frequencies (FTIR; cm^{-1})

	In CCl ₄	Crystal	$\Delta \nu$
$\nu \equiv c - H$	3309.5	3238.5	-71.0
$\nu_{C=0} (C3=O3)^{a}$	1678.4	1668.2	-10.2
$\nu_{C=0} (C22=022)^{a}$	1751.5	1751.1	-0.4

^a Assignment of the two $\nu_{C=0}$ bands is unambiguous since the ν_{CO} value for the ester C22=O22 must be at appreciably higher wavenumbers than that of the ketone C3=O3.

H atoms were treated using a riding model (SHELXL93; Sheldrick, 1993) with C—H = 1.09 Å.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved The author is on leave from the Max-Delbrück-Centrum für Molekulare Medizin, Forschungsgruppe Kristallographie (Professor U. Heinemann), Robert Rössle Strasse 10, D-13122 Berlin. He thanks Wolfram Saenger for the opportunity to carry out this study in his laboratory and W.-D. Hunnius for measuring the IR spectra. The study was supported by the Deutsche Forschungsgemeinschaft (Sa196/25-1).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1177). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Geerestein, V. J. van (1988). Conformational Aspects of Synthetic Sex Steroids. PhD thesis, University of Utrecht, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lutz, B., van der Maas, J. & Kanters, J. A. (1994). J. Mol. Struct. 325, 203-214.
- Mornon, J. P., Lepicard, G. & Delettre, J. (1976). C. R. Acad. Sci. Ser. C, 282, 387–390.
- Pedireddi, V. R. & Desiraju, G. R. (1992). J. Chem. Soc. Chem. Commun. pp. 988–990.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Steiner, Th. (1994a). J. Chem. Soc. Chem. Commun. pp. 101-102. Steiner, Th. (1994b). J. Chem. Soc. Chem. Commun. pp. 2341-2342.

Acta Cryst. (1996). C52, 2263-2266

Triphenylpropargylphosphonium Bromide

THOMAS STEINER

Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14159 Berlin, Germany. E-mail: steiner@chemie.fu-berlin.de

(Received 15 January 1996; accepted 1 April 1996)

Abstract

The asymmetric crystal unit of the title compound, $C_{21}H_{18}P^+.Br^-$, contains two formula units of similar geometry. The alkynyl residues of both independent cations donate hydrogen bonds to bromide ions with

 $H \cdots Br^-$ distances of 2.66 and 2.58 Å. This represents $C - H \cdots Br^-$ hydrogen bonding of considerable strength.

Comment

The crystal structure of the title compound, (I), was determined primarily in order to characterize the contact geometries of the organic cation with the $Br^$ counterion. Of particular interest is the behaviour of the alkynyl residue which is known to be one of the strongest C—H hydrogen-bond donors (Desiraju, 1991; Steiner, 1994; Lutz, van der Maas & Kanters, 1994).

The crystal structure contains two formula units per asymmetric crystal unit (Fig. 1), which are related by a pseudo centre of symmetry at x/a = 0.609(4), y/b= 0.248(5) and z/c = 0.614(2). The geometry of the cations is similar but with a substantial difference in the orientation of one phenyl ring [torsion angle C14-P—C12—C22 = 155.7 (5) and 166.2 (5)° in molecules A and B, respectively]. In both cations, the alkynyl residue donates a short and almost-linear hydrogen bond to a bromide ion; the corresponding $H \cdots Br^-$ distances are 2.66 and 2.58 Å for cations A and B, respectively. In the region of alkynyl C-H stretching frequencies, the IR absorption spectrum shows a relatively broad and asymmetric band peaking at 3149.8 cm⁻¹ (the asymmetry is presumably due to the composition of two individual bands from the two symmetry-independent alkynyl groups). This is one of the lowest solid-state alkynyl C-H stretching frequencies reported, indicating a considerable strength in the $C - H \cdot \cdot \cdot Br^{-}$ hydrogen bonds. [In a different alkynyl salt, propargylamine hydrochloride, NH_3^+ — CH_2 —CC— $H \cdot \cdot \cdot Cl^-$ (Steiner, 1995), the C—H···Cl⁻ interaction with H···Cl = 2.63 Å is associated with an alkynyl C-H stretching frequency of 3247 cm^{-1} .

In addition to the alkynyl C— $H \cdots Br^-$ contacts, the cations are tightly coordinated with bromide ions, as shown in Fig. 2 for cation *B*. All three phenyl rings and the propargyl CH₂ group are involved in short contacts to Br^- (geometries are listed in Table 3 for $H \cdots Br^-$ distances shorter than 3.2 Å). For these contacts, one can debate whether they may be regarded as 'hydrogen

Fig. 1. Molecular structure and atom labelling in (a) molecule A and (b) molecule B of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Contacts to Br^- shorter than $H \cdots Br^- = 3.2$ Å in cation B.

bonds' or if they are merely the result of the electrostatic attraction of Br⁻ by the central charge of the cation. Generally, the discussion of how $R^+C-H\cdots X^-$ contacts should be interpreted is not yet closed; only for the special case of $R^+-CC-H\cdots X^-$ interactions do the particular vibrational properties of the alkynyl C--H bond allow direct deduction of the hydrogen-bonding nature from the vibrational spectra.

Experimental

The title compound is commercially available (Lancester) and was recrystallized from MeOH.

Cu $K\alpha$ radiation

Cell parameters from 25

 $0.55\,\times\,0.10\,\times\,0.07$ mm

 $\lambda = 1.54176 \text{ Å}$

reflections $\theta = 10.3 - 31.0^{\circ}$

 $\mu = 3.879 \text{ mm}^{-1}$

T = 293 (2) K

Pale yellow

Rod

Crystal data

 $C_{21}H_{18}P^*.Br^ M_r = 381.23$ Orthorhombic $Pca2_1$ a = 14.868 (5) Å b = 11.953 (2) Å c = 20.403 (6) Å $V = 3626.0 (17) Å^3$ Z = 8 $D_x = 1.397 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius Turbo-CAD-4	2361 observed reflections
diffractometer	$[I > 2\sigma(I)]$
$\omega/2\theta$ scans	$R_{\rm int} = 0.0206$
Absorption correction:	$\theta_{\rm max} = 59.65^{\circ}$
semi-empirical (ψ -	$h = 0 \rightarrow 16$
scan; North, Phillips &	$k = -13 \rightarrow 1$
Matthews, 1968)	$l = -22 \rightarrow 0$
$T_{\rm min} = 0.82, \ T_{\rm max} = 0.99$	3 standard reflections
2991 measured reflections	frequency: 30 min
2763 independent reflections	intensity decay: 10.2%

Refinement

$\Delta \rho_{\rm max} = 0.199 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.261 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: none
Atomic scattering factors
from International Tables
for Crystallography (1992,
Vol. C, Tables 4.2.6.8 and
6.1.1.4)
Absolute configuration:
Flack (1983)
Flack parameter = $0.06(3)$

C21A	0.2547 (5)	0.6305 (5)	0.9092 (3)	0.056 (2)
C31A	0.1761 (5)	0.6859 (6)	0.8936 (4)	0.070 (2)
C41A	0.1313 (5)	0.7469 (6)	0.9404 (4)	0.074 (2)
C51A	0.1625 (4)	0.7522 (6)	1.0047 (4)	0.068 (2)
C61A	0.2404 (4)	0.6933 (5)	1.0216(4)	0.059 (2)
C12A	0.4668 (4)	0.5660 (5)	0.9287 (3)	0.0486 (15)
C22A	0.4623 (5)	0.4900 (5)	0.8769 (3)	0.067 (2)
C32A	0.5263 (6)	0.4944 (7)	0.8274 (4)	0.073 (2)
C42A	0.5927 (5)	0.5724 (7)	0.8294 (4)	0.076 (2)
C52A	0.5954 (5)	0.6496 (6)	0.8798 (4)	0.075 (2)
C62A	0.5323 (5)	0.6480 (5)	0.9289 (3)	0.059 (2)
C13A	0.3590 (4)	0.4138 (4)	1.0077 (3)	0.0428 (14)
C23A	0.2701 (4)	0.3806 (5)	1.0147 (4)	0.057 (2)
C33A	0.2521 (5)	0.2681 (5)	1.0280 (5)	0.065 (2)
C43A	0.3214 (5)	0.1916 (5)	1.0324 (3)	0.055 (2)
C53A	0.4091 (4)	0.2254 (5)	1.0250 (3)	0.0517 (14)
C63A	0.4287 (4)	0.3354 (4)	1.0133 (3)	0.049 (2)
C14A	0.4333 (4)	0.6197 (4)	1.0660 (3)	0.0442 (14)
C24A	0.5181 (4)	0.5667 (5)	1.0863 (3)	0.047 (2)
C34A	0.5844 (5)	0.5238 (6)	1.1053 (4)	0.063 (2)
Br2	0.49401 (4)	1.08460 (5)	0.52664 (3)	0.0593 (2)
P <i>B</i>	0.10650 (10)	0.94658 (12)	0.73460 (8)	0.0420(4)
C11 <i>B</i>	0.0072 (4)	0.8664 (5)	0.7553 (3)	0.0447 (14)
C21 <i>B</i>	-0.0273(4)	0.8708 (6)	0.8183 (3)	0.054 (2)
C31 <i>B</i>	-0.1027 (4)	0.8098 (6)	0.8344 (4)	0.059 (2)
C41 <i>B</i>	-0.1436 (5)	0.7459 (6)	0.7870 (4)	0.068 (2)
C51 <i>B</i>	-0.1116 (5)	0.7426 (7)	0.7238 (4)	0.082 (2)
C61 <i>B</i>	-0.0353(5)	0.8041 (6)	0.7076 (4)	0.070(2)
C12B	0.1850 (4)	0.9481 (5)	0.8006 (3)	0.0463 (14)
C22B	0.1669 (5)	1.0149 (6)	0.8547 (3)	0.065 (2)
C32B	0.2238 (6)	1.0125 (7)	0.9090 (4)	0.082 (3)
C42B	0.2993 (6)	0.9502 (7)	0.9069 (4)	0.081 (3)
C52B	0.3190 (5)	0.8852 (6)	0.8523 (4)	0.075 (2)
C62B	0.2617 (4)	0.8821 (5)	0.7982 (3)	0.056 (2)
C13B	0.0761 (4)	1.0878 (5)	0.7166 (3)	0.0458 (15)
C23B	-0.0131 (4)	1.1207 (6)	0.7089 (4)	0.058 (2)
C33B	-0.0326(6)	1.2305 (6)	0.6949 (5)	0.071 (2)
C43B	0.0355 (5)	1.3074 (5)	0.6862 (3)	0.063 (2)
C53B	0.1236 (5)	1.2753 (5)	0.6919(3)	0.056(2)
C63B	0.1464 (4)	1.1651 (5)	0.7077 (3)	0.053 (2)
C14B	0.1566 (4)	0.8820 (5)	0.6630(3)	0.0472 (15)
C24B	0.2362 (5)	0.9356 (5)	0.6399 (3)	0.050 (2)
C34 <i>B</i>	0.3030 (5)	0.9781 (6)	0.6194 (4)	0.066(2)
				0

Table 2. Selected geometric parameters (Å, °)

PAC11A	1.783 (6)	PB—C12B	1.783 (6)
PAC14A	1.789 (5)	PB—C13B	1.786 (6)
PA-C12A	1.791 (6)	PB—C11B	1.811 (6)
PA-CI3A	1.795 (5)	PB—C14B	1.812 (6)
C14A—C24A	1.470 (9)	C14BC24B	1.426 (9)
C24A—C34A	1.177 (9)	C24B—C34B	1.192 (9)
C11A-PA-C14A	107.6 (3)	C12B—PB—C13B	108.2 (3)
C11A—PA—C12A	111.3 (3)	C12BPBC11B	111.3 (3)
C14APAC12A	109.2 (3)	C13B—PB—C11B	110.0 (3)
C11A—PA—C13A	109.4 (3)	C12B—PB—C14B	110.1 (3)
C14A—PA—C13A	110.7 (3)	C13B—PB—C14B	109.9 (3)
C12A—PA—C13A	108.6 (3)	C11 <i>B</i> —P <i>B</i> —C14 <i>B</i>	107.3 (3)
C24AC14APA	112.8 (4)	C24B—C14B—PB	114.6 (4)
C34AC24AC14A	177.0 (7)	C34BC24BC14B	178.3 (7)
C14A—PA-	-C11A-C21A	157.4 (5))
C14A—PA-	-C12A-C22A	155.7 (5))
C14A—PA-		106.2 (6))
C11APA-	-C14A-C24A	-178.3 (4))
C14 <i>B</i> P <i>B</i> -	C11 <i>B</i> C21 <i>B</i>	158.2 (5))
C14 <i>B</i> —P <i>B</i> -		166.2 (5))
C14 <i>B</i> P <i>B</i> -		107.6 (6))
C11 <i>B</i> —P <i>B</i> -	C14 <i>B</i> C24 <i>B</i>	179.8 (5))

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
Brl	0.77297 (4)	0.40831 (5)	1.20321 (3)	0.0602 (2)
PA	0.38639 (10)	0.55814(11)	0.99380 (7)	0.0412 (4)
C11A	0.2865 (4)	0.6335 (5)	0.9742 (3)	0.0458 (15)

Table 3. Parameters of the C—H...Br contacts (Å, °)

As H-atom positions are theoretical (refined using a riding model), no e.s.d.'s are given for parameters involving H atoms.

$D - H \cdot \cdot \cdot A$	HA	$D \cdot \cdot \cdot A$	$D = H \cdots A$
C34A—H34A···Br1	2.66	3.710 (8)	161
C34B—H34B···Br2	2.58	3.643 (8)	164
C61AH61A···Br1 ¹	2.95	3.929 (8)	150

C14A—H14B···Br1 ⁱ	2.60	3.692 (6)	178	
C62A—H62A···Br2 ⁱⁱ	2.76	3.788 (7)	157	
C14A—H14A···Br2 ⁱⁱ	2.71	3.782 (6)	169	
C14 <i>B</i> —H14C···Br1 ⁱⁱⁱ	2.63	3.716 (6)	175	
C62 <i>B</i> —H62 <i>B</i> ···Br1 ⁱⁱⁱ	3.13	4.009 (7)	138	
C42A—H42A···Brl ^{iv}	2.95	3.804 (8)	136	
C33B—H33B···Brl [∨]	3.12	4.161 (8)	159	
C53B—H53B···Brl ^{vi}	3.16	4.089 (6)	143	
C14B—H14D···Br2 ^{vii}	2.63	3.707 (6)	171	
C61 <i>B</i> —H61 <i>B</i> ···Br2 ^{vii}	2.99	3.948 (9)	147	
C42 <i>B</i> —H42 <i>B</i> ···Br2 ⁱⁱ	2.90	3.947 (8)	161	
C53A—H53A···Br2 ^{viii}	3.04	3.976 (6)	144	

Symmetry codes: (i) $x - \frac{1}{2}, 1 - y, z$; (ii) $1 - x, 2 - y, \frac{1}{2} + z$; (iii) $1 - x, 1 - y, z - \frac{1}{2}$; (iv) $\frac{3}{2} - x, y, z - \frac{1}{2}$; (v) $\frac{1}{2} - x, 1 + y, z - \frac{1}{2}$; (vi) $1 - x, 2 - y, z - \frac{1}{2}$; (vii) $x - \frac{1}{2}, 2 - y, z$; (viii) $1 - x, 1 - y, \frac{1}{2} + z$.

H-atom positions were refined in a riding model (*SHELXL93*; Sheldrick, 1993) with a C—H bond length of 1.09 Å.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

The author is on leave from the Max-Delbrück-Centrum für Molekulare Medizin, Forschungsgruppe Kristallographie (Professor U. Heinemann), Berlin, Germany. He thanks Professor W. Saenger for giving him the opportunity to carry out this study in his laboratory and J. Jacob for measuring the IR data. The study was supported by the Deutsche Forschungsgemeinschaft (Sa 196/25–1).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1184). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lutz, B., van der Maas, J. & Kanters, J. A. (1994). J. Mol. Struct. 325, 203-214.
- North, A. C. T., Phillips, D. C. & Matthews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Steiner, Th. (1994). J. Chem. Soc. Chem. Commun. pp. 2341-2342. Steiner, Th. (1995). Z. Kristallogr. 210, 459.

Acta Cryst. (1996). C52, 2266-2269

Glycyl-L-histidinium Chloride Dihydrate: an Unusual Histidine Conformation

THOMAS STEINER

Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14159 Berlin, Germany. E-mail: steiner@chemie.fu-berlin.de

(Received 23 February 1996; accepted 2 April 1996)

Abstract

The histidine side chain of the title compound, $C_8H_{13}N_4O_3^{+}.Cl^{-}.2H_2O$, is protonated and is incorporated in a tight N—H···X and C—H···X hydrogenbonding pattern. The orientation of the imidazole moiety is unusual and associated with a short intramolecular C—H···O—C hydrogen bond from HisC δ —H to the peptide C—O. This configuration has not been observed previously with peptides.

Comment

The crystal structure of the title compound, (1), was determined primarily to study the hydrogen-bonding interactions of the histidine residue. When carrying a positive charge, the imidazole moiety of histidine is often found tightly coordinated to hydrogen-bond acceptors. Not only both N—H but also both imidazole C—H groups then donate hydrogen bonds (see Steiner, 1995, 1996).

Compound (1) was crystallized as a mono hydrochloride so the dipeptide carries positive charges at the N terminus and at the histidine side chain, and a negative charge at the C terminus (Fig. 1*a*). There are two water molecules cocrystallized for every dipeptide. This leads to a complex system of O—H···X, N—H···X and C—H···X hydrogen bonds ($X = O, Cl^-$; Table 3) that need not be discussed here in detail. The hydrogen-bonding pattern formed by the imidazole moiety of (1) is shown in Fig. 2. As in previous studies, all N— H and C—H donors are engaged in hydrogen bonding, those donated by N3—H and C8—H even being threecentered. Most remarkable is a short intramolecular C— H···O hydrogen bond from C7—H (*i.e.* HisC δ —H) to the peptide C=O.